Our online programs teach advanced coaching approaches, and have been attended by thousands of coaches from all over the world. Such programs as The Art of Developmental Coaching and The Neuroscience of Change are unique trainings taught by teams of world class coaches, through live video classes.
Arc Of Embodiment Online Free
Our experiences of the world are always embodied. We cannot help but speak from bodies; our bodies speak to us, in ways we may not consciously understand; and they also often speak for us in uncontrollable ways. As we articulate our embodied experiences, we bump against the understandings, experiences, and articulations of other-bodied people. The entanglements of articulation, experience, and embodiment mark every attempt to understand ourselves and every interaction with others.
We welcome researchers at all stages of their studies and careers, working both within and outside academia. The workshop itself is free and we have a limited budget to support attendance. This will be allocated on a first-come, first-served basis, with prioritisation of PG students and those travelling from outside Essex.
Described herein are multiple embodiments of an arc resistant enclosure for dry-type transformer(s). In particular, in one embodiment, an arc resistant enclosure for housing dry type transformer(s) comprises base and roof structures secured to at least three walls forming an enclosed space. One of the walls is a front wall comprising a first and second corner piece, a first face frame proximate the first and second corner pieces defining a first access opening, and a first access panel arranged to cover the first access opening. At least one ventilation opening is cut into the either the roof or walls. The front wall contains at least one longitudinal seam covered by an arc channel, wherein the arc channel is attached in such a manner that, upon an arc event, arc gas is substantially prevented from escaping the enclosure through the covered longitudinal seam. In at least one embodiment, an arc fault plenum is attached to the at least one ventilation opening.
In another embodiment, an arc resistant enclosure for dry-type transformer(s) comprises base and roof structures secured to at least three walls, forming an enclosed space. At least one of the walls contains at least one ventilation grating, and at least one ventilation opening is cut into either the roof or walls. An arc fault damper apparatus is affixed adjacent at least one of the ventilation gratings; providing, however, that an arc fault damper apparatus is affixed adjacent every ventilation grating that is located at or below a height of 79 inches from the floor level. Finally, each arc fault damper apparatus is configured to close upon an arc flash event, thereby substantially preventing the escape of arc flash gas through the at least one ventilation gratings.
In the accompanying drawings, structural embodiments are illustrated that, together with the detailed description provided below, describe exemplary embodiments of an arc resistant metal enclosures for dry-type transformers, or components thereof. One of ordinary skill in the art will appreciate that a component may be designed as multiple components or that multiple components may be designed as a single component.
With reference to FIGS. 1B and 1C, a transformer enclosure 100 according to one embodiment of the present invention is shown. Enclosure 100 includes a base structure 110, walls 120, and a roof structure 150. The base structure may include means for supporting a transformer (not shown) within the enclosure, such as brackets 115. The walls 120 are secured to the base structure 110, typically at the bottom portion of the walls 120. Walls 120 are preferably substantially perpendicular to the base structure 110, e.g., at an angle of approximately 90, such as between 80-100. As will be appreciated, in other embodiments, walls 120 and base structure 110 may form an angle substantially different from 90, such as 30, 45, 60, 120, 135, 150, and any of various angles therebetween. Walls 120 are preferably secured around the perimeter of the base structure 110. Alternatively, walls 120 are secured at any point of the base structure 110.
Roof structure 150 is secured to the top of walls 120 and may comprise one or more generally flat, rigid panels. Roof structure 150 may contain one or more ventilation openings, or holes, 155 that permit ventilation of the interior of the enclosure. In one embodiment, roof structure 150 comprises three flanged and interlocked roof panels 150a-c, with each roof panel containing a ventilation opening 155a-c in the center thereof. As will be appreciated, although a flat, multi-paneled roof structure 150 is depicted in FIGS. 1B and 1C, in other embodiments, roof structure 150 may be comprised of any suitable number of panels having any suitable geometric shape. For example, in one embodiment, roof structure 150 comprises a single flat, rigid panel containing a single ventilation opening. The roof structure and ventilation openings are described in more detail below, in the context of arc plenums.
Enclosure 100 is fabricated using generally any material that is capable of providing the functional requirements of the user, including arc fault resistance. In one embodiment, enclosure 100 is fabricated using heavy gauge sheet steel; in other embodiments, enclosure 100 is fabricated using heavy gauge aluminum or stainless steel. The enclosure 100 may comply with National Electrical Manufacturers Association (NEMA) 250 Standards.
With reference again to FIGS. 1B and 1C, in the embodiment shown, rectangular enclosure 100 has a front wall 120a, a first sidewall 120b, a back wall 120c (not shown), and a second sidewall 120d (not shown). In this embodiment, the front and back walls are similarly configured, and the first and second sidewalls are similarly configured. As such, only front wall 120a and first sidewall 120b are referenced hereinafter. As may be appreciated, in other embodiments, the walls may be differently configured.
In the embodiment shown, front wall 120a is comprised of a rigid face frame 125 that is itself comprised of two identical face frames 126 and 127 arranged in a coplanar and adjacent manner. Face frame 126 has first and second longitudinal edges bearing first and second longitudinal flanges 128, 129 that extend inwardly from and perpendicularly to the plane of face plate 126. Likewise, second face frame 127 has first and second longitudinal edges bearing first and second longitudinal flanges 130, 131 that extend inwardly from and perpendicularly to the plane of face frame 127. Longitudinal flanges 129, 130 are mechanically affixed, via bolts or otherwise, forming fourth longitudinal seam 170d, thereby providing rigid face frame 125. As will be appreciated, rigid face frame 125 may also be comprised of a single face frame, thereby eliminating the need for longitudinal flanges 129, 130.
With continued reference to FIGS. 1B and 1C, the front wall 120a is comprised of first and second corner pieces 134, 136. Corner pieces 134, 136 are rigid, unitary panels that are curved or angled in a manner to form a first portion 134a, 136a, and a second portion 134b, 136b. The angle defined by first and second portions depends on the geometric shape of enclosure 100. In the embodiment shown, the angle is 90. First portion 134a, 136a is generally co-planar with face plate 125 and forms part of front wall 120a, while second portion 134b, 136b forms part of sidewalls 120b,d and are co-planar with the remaining components of those wall, described below.
Front wall 120a may also comprise one or more rigid access panels 140. In the embodiment shown, front wall 120a comprises first and second rigid access panels 140a,b that are configured and arranged to cover access openings 132 of face frame 125. Access panels 140 are mechanically affixed to face frame 125 by any suitable means. In one embodiment, access panels 140 are configured such that each longitudinal side is flanged in a manner to mate with U-shaped channels 133 of face frame 126, 127, and are bolted along their length to face frame 125 in the manner described below.
Front wall 120a may also comprise one or more ventilation gratings 180 that allow gas to pass into and out of the interior of the enclosure. In the embodiment shown, access panels 140 each contain two ventilation gratings 180. In other non-limiting embodiments, the one or more ventilation gratings are located in one or more different locations, such as sidewalls 120b,d, and/or back wall 120c.
Sidewall 120b comprises one or more rigid sidewall plates 145. In the embodiment shown, sidewall 120b comprises two identical sidewall plates separated by, and affixed to, an elongated sidewall support piece 146. Additionally, sidewall 120b comprises second portion 136b of corner piece 136, as well as an analogous second portion of counterpart corner piece 138.
Arc channels 160 act to contain rapidly expanding gases resulting from an arc fault event inside the enclosure, or to direct expanding gases to a point that will not be likely to cause harm (e.g., to a point higher than 79 in. above floor level). Referring to FIGS. 2A and 2B, in one embodiment, arc channels 160 have a central flat elongated portion 163 and two side portions 164. Side portions 164 are formed by angling each side twice at approximately 90, creating a turned-up portion 164a and a flanged portion 164b that is approximately parallel to the central portion 163. Preferably, both ends 161 and 162 of arc channel 160 are substantially closed or capped by, for example, welding a small flat metal end-cap piece 165 to either end such that the cross-sectional area between each turned-up portion 164a is substantially covered, as shown in FIG. 2B. Each arc channel 160 is attached to the outer surface of the enclosure walls 120 such that the flanged portions 164b abut the outer surface, thereby creating an enclosed space (not shown) between the outer surface of the enclosure walls 120 and the inner surface of the flat elongated portion 163. 2ff7e9595c
Comments