NOTE TO PARAGRAPH (a)(1)(i)(A): The types of installations covered by this paragraph include the generation, transmission, and distribution installations of electric utilities, as well as equivalent installations of industrial establishments. Subpart S of this part covers supplementary electric generating equipment that is used to supply a workplace for emergency, standby, or similar purposes only. (See paragraph (a)(1)(i)(B) of this section.)
power system generation transmission and distribution pdf free
Entire 1910.269, except paragraph (r)(1) of this section, applies to line-clearance tree trimming covered by the introductory text to paragraph (a)(1)(i)(E) of the section when performed by qualified employees (those who are knowledgeable in the construction and operation of the electric power generation, transmission, or distribution equipment involved, along with the associated hazards).
To construction work, as defined in 1910.12 of this part, except for line-clearance tree trimming and work involving electric power generation installations as specified in 1926.950(a)(3) of this chapter; or
Note 1 to paragraph (a)(1)(ii)(B): The Occupational Safety and Health Administration considers work practices conforming to 1910.332 through 1910.335 as complying with the electrical safety-related work-practice requirements of 1910.269 identified in Table 1 of appendix A-2 to this section, provided that employers are performing the work on a generation or distribution installation meeting 1910.303 through 1910.308. This table also identifies provisions in 1910.269 that apply to work by qualified persons directly on, or associated with, installations of electric power generation, transmission, and distribution lines or equipment, regardless of compliance with 1910.332 through 1910.335.
Application. The provisions of paragraph (d) of this section apply to the use of lockout/tagout procedures for the control of energy sources in installations for the purpose of electric power generation, including related equipment for communication or metering. Locking and tagging procedures for the deenergizing of electric energy sources which are used exclusively for purposes of transmission and distribution are addressed by paragraph (m) of this section.
Note to paragraph (d)(1): Installations in electric power generation facilities that are not an integral part of, or inextricably commingled with, power generation processes or equipment are covered under 1910.147 and Subpart S of this part.
Note 1 to paragraphs (g)(2)(iv)(C)(2) and (g)(2)(iv)(C)(3): These paragraphs apply to structures that support overhead electric power transmission and distribution lines and equipment. They do not apply to portions of buildings, such as loading docks, or to electric equipment, such as transformers and capacitors. Subpart D of this part contains the duty to provide fall protection associated with walking and working surfaces.
Application. Paragraph (m) of this section applies to the deenergizing of transmission and distribution lines and equipment for the purpose of protecting employees. See paragraph (d) of this section for requirements on the control of hazardous energy sources used in the generation of electric energy. Conductors and parts of electric equipment that have been deenergized under procedures other than those required by paragraph (d) or (m) of this section, as applicable, shall be treated as energized.
Application. Paragraph (n) of this section applies to grounding of generation, transmission, and distribution lines and equipment for the purpose of protecting employees. Paragraph (n)(4) of this section also applies to protective grounding of other equipment as required elsewhere in this section.
Note to paragraph (n)(1): This paragraph covers grounding of generation, transmission, and distribution lines and equipment when this section requires protective grounding and whenever the employer chooses to ground such lines and equipment for the protection of employees.
General. For any employee to work transmission and distribution lines or equipment as deenergized, the employer shall ensure that the lines or equipment are deenergized under the provisions of paragraph (m) of this section and shall ensure proper grounding of the lines or equipment as specified in paragraphs (n)(3) through (n)(8) of this section. However, if the employer can demonstrate that installation of a ground is impracticable or that the conditions resulting from the installation of a ground would present greater hazards to employees than working without grounds, the lines and equipment may be treated as deenergized provided that the employer establishes that all of the following conditions apply:
In the United States, the entire electricity grid consists of hundreds of thousands of miles of high-voltage power lines and millions of miles of low-voltage power lines with distribution transformers that connect thousands of power plants to hundreds of millions of electricity customers all across the country.
The origin of the electricity that consumers purchase varies. Some electric utilities generate all the electricity they sell using just the power plants they own. Other utilities purchase electricity directly from other utilities, power marketers, and independent power producers or from a wholesale market organized by a regional transmission reliability organization.
Power plants generate electricity that is delivered to customers through transmission and distribution power lines. High-voltage transmission lines, such as those that hang between tall metal towers, carry electricity over long distances to meet customer needs. Higher voltage electricity is more efficient and less expensive for long-distance electricity transmission. Lower voltage electricity is safer for use in homes and businesses. Transformers at substations increase (step up) or reduce (step down) voltages to adjust to the different stages of the journey from the power plant on long-distance transmission lines to distribution lines that carry electricity to homes and businesses.
The Eastern and Western Interconnections in the United States are also linked with the Canadian power grid. The network structure of the interconnections helps maintain the reliability of the grid by providing multiple routes for power to flow and allowing generators to supply electricity to many load centers. This redundancy helps prevent transmission line or power plant failures from causing interruptions in service to retail customers.
The three interconnections describe the large-scale physical structure of the grid. The regional operation of the electric system is managed by entities called balancing authorities, which ensure that electricity supply constantly matches power demand. Most of the balancing authorities are electric utilities that have taken on the balancing responsibilities for a specific part of the power system. All of the regional transmission organizations in the United States also function as balancing authorities. ERCOT is unique in that the balancing authority, interconnection, and the regional transmission organization are all the same entity and physical system.
Construction of electricity infrastructure in the United States began in the early 1900s and investment was driven by new transmission technologies, central station generating plants, and growing electricity demand, especially after World War II. Now, some of the older, existing transmission and distribution lines have reached the end of their useful lives and must be replaced or upgraded. New power lines are also needed to maintain the electrical system's overall reliability and to provide links to new renewable energy generation resources, such as wind and solar power, which are often located far from where electricity demand is concentrated.
Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.
Efficient long-distance transmission of electric power requires high voltages. This reduces the losses produced by strong currents. Transmission lines use either alternating current (HVAC) or direct current (HVDC). The voltage level is changed with transformers. The voltage is stepped up for transmission, then reduced for local distribution.
Historically, transmission and distribution lines were often owned by the same company, but starting in the 1990s, many countries liberalized the regulation of the electricity market in ways that led to separate companies handling transmission and distribution.[1]
Most North American transmission lines are high-voltage three-phase AC, although single phase AC is sometimes used in railway electrification systems. DC technology is used for greater efficiency over longer distances (typically hundreds of miles). HVDC technology is also used in submarine power cables (typically longer than 30 miles (50 km)), and in the interchange of power between grids that are not mutually synchronized. HVDC links stabilize power distribution networks where sudden new loads, or blackouts, in one part of a network might otherwise result in synchronization problems and cascading failures.
Electricity is transmitted at high voltages to reduce the energy loss that occurs over long distances. Power is usually transmitted through overhead power lines. Underground power transmission has a significantly higher installation cost and greater operational limitations, but lowers maintenance costs. Underground transmission is more common in urban areas or environmentally sensitive locations. 2ff7e9595c
Comments